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Dynamics of a Compact Hyperbolic Cosmological 
Model with Dustlike Matter and Radiation 
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The classical and quantum dynamics of a compact hyperbolic cosmological model 
with dustlike matter and radiation are presented. The properties of homogeneity 
and isotropy are conserved in small regions only. We compare various other 
methods of quantization with our approach. The present paper is an extended 
and corrected version of an earlier paper, 

1. INTRODUCTION 

The quantization of cosmological models originates with De Witt's 
(1967) fundamental paper. B urlankov et al. (1984) developed the dynamics 
of a closed model of a homogeneous and isotropic universe filled with an 
elastic gas. The equation of state for a low-density gas corresponds to the 
case of dustlike matter and for a high-density gas it corresponds to the 
ultrarelativistic case, i.e., the equation of state contains both limiting cases 
of the state of matter, which had to be considered separately before. 

Homogeneity and isotropy of space means that one can choose a world 
time such that the space metric is the same at all points at any moment of 
time. The properties of the curvature of such a space are determined by one 
variable only--its scalar curvature. So only three different cases of the space 
metric are possible: (i) space of positive curvature (closed model), (ii) space 
of negative curvature (hyperbolic model), and (iii) flat space with curvature 
equivalent to zero (parabolic model). Restriction of consideration to high- 
symmetry models allows us to treat some of the principal difficulties of the 
theory of gravity. We will consider the hyperbolic isotropic universe in 
this paper. 
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The open model possesses the undesirable feature that its spatial volume 
and total mass are infinite. So we consider a compactified manifold con- 
structed of a hyperbolic polyhedron with faces pairwise identified. The homo- 
geneity and isotropy of the matter distribution determine only a local space- 
time metric, but the global topology of the space-time (Fagundes, 1982, 1983, 
1985, 1992a,b). 

The completely connected Riemannian manifolds of constant curvature 
are defined as space forms (Efimov, 1978). The space forms of a negative 
curvature H3/~  can be constructed in infinite ways (Efimov, 1978), where 

is the group of isometries of H 3. All manifolds possessing a metric of a 
given constant curvature have the same geometry in the small. Each manifold 
assumes congruent, in the sense of its geometry, movements of sufficiently 
small elements along it, but metrized manifolds of different topological types, 
on the whole, possess different geometries. For our case it is not important 
what method of compactification is taken. A unique demand for a scheme 
of compactification of a manifold is to reduce the surface divergent terms in 
the Lagrangian (De Witt, 1967) of a gravitational field. In the final formulas 
topological peculiarities of the compactified manifold are not essential. The 
formulas contain the value of its volume only. 

The classical gravitational equations of the model admit exact solutions. 
Because the theory of relativity is formulated in an extended phase space, 
in the Hamiltonian language of description we carry out a Hamiltonian 
reduction after some canonical transformation. Then in the chosen system 
of reference we calculate the total energy of the system. However, addendums 
of the energy do not have the traditional sense for the mixing of terms of 
gravitational and matter origin. 

Then we develop a quantum description of the behavior of the model 
considering transitions of the universe through a collapse point. The quantum 
problem is also exactly solvable. An examination of the correspondence 
principle leads to the Ehrenfest theorem. The quantum average mean of a 
scalar factor of the universe and its canonical conjugate variable follow by 
classical laws. As to their dispersions, the wave packets diffuse in time. 

The final section compares various popular methods of quantization. 

2. CLASSICAL DYNAMICS OF THE MODEL 

According to the principles of general relativity, the metric of a four- 
dimensional continuum is defined locally by the state of matter. However, 
the space-time structure can have an extremely complicated character in view 
of the nonhomogeneous distribution of matter. In studying the structure of 
a space-time manifold one may consider matter as quite homogeneously 
distributed for sufficiently extended space scales. Consequently matter can 
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be described by a slowly changing function. The first quadratic form of an 
open model can be taken as 

ds 2 = a2 ( r l ) [ -N  2 drl 2 + d× 2 + sinh2x (dO 2 + sin20 dqo2)] (2.1) 

where a is the pseudosphere radius at the moment xl; N is a lapse-like function; 
and 11, ×, 0, and q~ are dimensionless coordinates of the pseudosphere. The 
pseudosphere with radius a can be completely embedded into pseudo-Euclid- 
ean space. The imbedded manifold is a hyperboloid of  two sheets. It is 
disposed inside the light cone. The upper sheet of  the hyperboloid corresponds 
to the case o f a  > 0 (world) and the lower one to the case o f a  < 0 (antiworld). 
On this hypersurface the metric of  Lobachevsky is induced. 

In this paper we investigate a universe filled with masses (hazinesses, 
cosmic dust) and radiation with the equation of  state 

3 E = c2p + ~ (Ap2) 2/3 (2.2) 

where c is the light speed, e is the volume density of  the gas energy, p is 
the volume density of  the mass, and A is expressed through the radiation 
energy shown below. 

The second law of  thermodynamics can be obtained as a result of so- 
called laws of  conservation in the gravitation. For isentropic processes to 
which we are restricted here, we have 

d = - p  (2.3) 

where p is the pressure. Then, introducing the mass density of the enthalpy w 

w = (e + p) lp  (2.4) 

one can rewrite the second law: 

dw = 1 dp (2.5) 
P 

The relation between differentials of the right and left sides of  equation (2.4), 
taking into account (2.5), gives us one more form of  the second law: 

de = w do (2.6) 

Using these formulas, one gets the expression for the pressure of the 
gas through its enthalpy density: 

de (w -- cZ) 3 
_ _ C 2 + (9A2) I'3, p -- A2 w dp 

= f p d w -  ( w -  c2) 4 
4A 2 (2.7) P ) 
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Notice that the equation of  state for a low-density gas corresponds to 
the case of  dustlike matter e = c2p, as is seen from (2.7); for a high-density 
gas it corresponds to the ultrarelativistic case e = 3p, because for this case 

w = (pA2) t/3, p = w4/(4A 2) 

and excluding w from (2.7), one finds the connection between p and p: 

1 p = ~ (Ap2) 2/3 (2.8) 

Hence we have the relation 

= 3p (2 .9 )  

So the model of  the universe investigated is really filled with massive particles 
and radiation. 

The action functional of the gas is a scalar and defined through p(w) as 

S,, = f d4x p(w)x /Zg  (2.10) 

where g is the determinant of  the metric tensor. Let us describe the enthalpy 
density w of  the gas as the derivative of the potential function cr('q) with 
respect to the intrinsic time -r (Burlankov et al., 1984): 

dcr 
w = - -  (2.11) 

d'r 

It can be shown that the momentum-energy tensor corresponds to that of an 
ideal liquid. An adiabatic without whirling motion of  an elastic gas in general 
relativity can be described by using a potential function tr(x~). It defines the 
enthalpy density of a gas 

w = (g¢~ Ox ¢Ocr Otr) In 
~x~/ (2.12) 

The variation of Sm by o" leads to equations of  motion 

Ox ~ Ox ~ 

As dp/dw = P and the vector field 

Off 1 u ~ = g~V _ 
Ox v w 

obeys 

(2.14) 

g~.~uV'u " = 1 (2.15) 
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(consequently, u~ is the 4-velocity of the gas), so equation (2.13) is the 
conservation law for the mass of the gas, meaning that 

V~(pu ~) = 0 (2.16) 

The energy-momentum tensor 

2 O(p , f -L -g )_  dp 1 &r Ou 

T~v = ~ Og~. ~ d w  w Ox ~ Ox ~ P g ~  

= pwu~uv - pg~v = (e + p)u~u,  - p g ~  (2.17) 

corresponds to that of an ideal liquid. In the isotropic case we get (2.11). 
Now, let us obtain the Hilbert functional from the Arnowit t-Deser-  

Misner (ADM) approach, which is based on separating the 4-dimensional 
space-time into time and space. It is developed for Hamiltonian systems 
with constraints. 

The space metric tensor gik is 

(gik) = a2(~) diag(l,  sinhZx, sinh2× sin20) (2.18) 

Using it, we obtain the external curvature tensor Kik of the space: 

1 
g i k  - -  gik (2.19) 

(2aN) 

Then, by using (2.18) and (2.19), we get the Ricci scalar density (, .2) 
N a g t n ( K i t K  i~ - K 2 + R) = - 3  sin20 ~-~ + N-~- (2.20) 

We shall integrate this expression to obtain the action by space coordinates 
over the finite space region. It is isometric to a fundamental polyhedron. A 
closed universe is preferable to an open one. If  we consider problems related 
to a planetary system, we choose boundary conditions in such a way that there 
is a coordinate system where all gravitational potentials are Minkowskian at 
spatial infinity. But a priori  it is not obvious that we have the right to use 
the same boundary conditions if we consider the universe as a whole. Einstein 
suggested a way to avoid boundary conditions: the question could be avoided 
if a world continuum is closed with reference to space and has a finite 3- 
dimensional volume. 

Setting c = t, G = 3/(16~r), and a dimensionless space volume of unit 
scale V = 1, we get the resulting action (the Hilbert functional plus the 
matter action): 

If" ;I S = d'q 2N ~ - a (2.21) 
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The description of  the gauge theory dynamics follows the Hamiltonian 
approach. The Hamiltonian formalism is introduced by the Legendre transfor- 
mation. We get an extended phase space with Poisson brackets. The momenta 
canonically conjugate to the variables a and ~r, respectively, are 

- a  

The Hamiltonian H is 

1 2 1 1 2 3 ] 
H =  N - 2  p~ + 2 (a + p,r) 2 - ~ p,, + -~ (Ap~) ~3 = Ntpo (2.22) 

where q~0 is the Hamiltonian constraint. 
The generalized Poincarr-Cartan differential form is oJ j = p~ da + p,~ dcr 

- Nq% dxl. From the closure conditions of the 1-form and by force of 
topological triviality of the phase space one gets the Hamiltonian equations 
on the constraint hypersurface: 

da 
- Np~, p,~ = const 

dpa dcr 
- N ( a  + P,0,  

dxl d~l 
- N[a + (A2pcr) 1/3] = a N w  (2.23) 

1 1 1 3 
p ~ -  ~ ( a  +p,~)2 + 2 p ~ _  ~(Ap~)~3 = 0 

We obtain the enthalpy density w from (2.23) immediately 

w = 1 + _1 (A2p,~)u 3 (2.24) 
a 

So the thermodynamic characteristics of the gas have a singularity at 
the point a = 0: 

P~r (AP~) z/3 
P = ~-3' P - 4a 4 

p,~ 3 (Ap2~) 2/3 
e = ~ + 4 a 4 (2.25) 

[compare with Schmutzer et al. (1980)]. Hence, as follows from (2.25), the 
numerical value for p,~ gives a dust mass, p,~ = M, which is conserved in 
time; the parameter A is connected with the radiation energy. 
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The Friedmann equation in the form of conservation of energy follows 
from the system (2.23): 

l fda~  2 _ (a + M) 2 =  E (2.26) 
2 \d'~] 

where the total energy E (together with the gravitational one) 

1 M~ 3 E = - ~  + ~ (AM2) 2/3 (2.27) 

is conserved and is not added as the sum of the mass energy, radiation energy, 
and gravitational interaction energy. The problem is reduced to the effective 
mechanical one of a particle in a quadratic potential. 

It is necessary to say something about the problem of energy in the 
theory of gravity. The question of the definition of the main integrals of the 
motion--energy, momentum, and angular momentum--was raised at once 
after the creation of the theory of gravitation by Einstein in 1915 and was 
solved by him mainly in 1918: the term "general relativity" which was given 
by the author to his creation relates not to dynamics, but to a definition of 
the gauge group of symmetry. The theory is formed in a covariant form 
relative to a group of coordinate transformations. But if one wishes to consider 
the dynamics, it is necessary to go over to a Hamiltonian noncovariant 
formalism. And here, strange though it may seem, it is just the gauge invari- 
ance in the description of the theory (which has led to the unified theory of 
electroweak interactions and provided a clue in superstring theories trying 
to unify all physical interactions) that puts obstacles to the study of the 
dynamics (to found dynamical characteristics and then to quantize the theory). 
It is necessary to go from the canonical Lagrange formulation of the theory 
to a noncovariant Hamiltonian one, i.e., to find an adequate observer in whose 
system of reference we are to determine the dynamics and calculate the 
conserved characteristics. 

The concept of energy (and the other main integrals as well) of a 
gravitational field interacting with a system of mass and fields of matter is 
introduced in traditional theoretical physics only in the case when space-time 
at spatial infinity is reduced to Minkowski space. A dynamical shift along 
the time is defined relative to an observer sufficiently far from gravitating 
masses. Then the energy in the observer's system of reference is calculated 
by using the Norther theorem. The existence of ten integrals of motion is 
connected with the isotropy of the Minkowski space on the background of 
which the system is being studied. In contrast, in cosmology there is no such 
observer gazing at the universe from outside and keeping an eye on it and 
using his or her own watch. So the usual way of calculating is not appropriate 
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for cosmological problems. But the worlds described by Einstein's equations 
are much more interesting: among them there are topological nontrivial 
space-times and black holes. According to Einstein, laws of nature must be 
formulated in a form independent of the choice of a reference system because 
they are formally equivalent. If  we choose a system, the theory of  physical 
phenomena must be described entirely in terms which belong only to this 
system. Mental glances of arbitrary contemplators in classical gravity at the 
world are only a method of description, but not a necessary element of 
physical laws. The essence of the principle of general relativity is contained 
in this "democracy." But in each concrete problem it is convenient to take 
a system of observation where the analysis and solution of the problem are 
simplified. The use of Minkowski space as a certain fundamental one for an 
analysis of all gravitational problems is not logical from Einstein's point of 
view. As we mentioned, one can obtain in a standard way conservation laws 
for an energy-momentum and an angular momentum of a substance together 
with gravitational fields on the bimetric basis only in an asymptotically 
Minkowski space. The flat space having a 4-parameter group of transitions 
and a 6-parameter group of rotations is formally equivalent to a Riemannian 
one. And the space is convenient if we consider simple island-type objects 
only. 

In order to ask how to define the energy of the universe, it is necessary 
to introduce its conjugate characteristic associated with change-- the  time. 
But there is no such abstract clock hanging over the universe and counting 
an abstract time. Changes which occur in it and which we are to describe 
lead us to build a characteristic relative to which a development takes place. 
And this time is not derived from something external, but from inner character- 
istics of the universe. Thus one can consider how to obtain the energy 
conserved in this time. 

There is no general method of simplification of  the Lagrange function nor 
systematic approach to obtaining cyclic variables. In contrast, in Hamiltonian 
mechanics there is a method for getting cyclic variables and a simplification 
of the Hamiltonian function. This approach reduces the problem of the integra- 
tion of motion equations to obtaining a generation function of some transfor- 
mation. This method of  coordinate transformation is based on a different 
approach as compared with the problem of direct integration. It is important 
that under transformations there are conserved canonical equations, i.e., the 
Poincarr-Cartan form is conserved. So the dynamical problem is reduced to 
one of the theory of groups. 

Let us perform the canonical transformations which keep to I closed, 
denoting 

x -- a + p,~, Px -= Pa 
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We have  

to~ = Px dx  + p~ d(cr + Px) + Nq~o d'q - d(pxp~) 

(~Y + Px)[Pe - (I/3)(A2P~r) u3] 
+ dp~ + Nq~o dxl - d(p~p~) (2.28) 

P,r - (A2p~) u3 

Then  one constructs  the " inner"  t ime t f rom the coordinates  of  an 
expanded  phase  space: 

cr + Px 
t = (2.29) 

Per -- (A2p~)I/3 

which coincides  with Xl, dt/d"q = 1 (so also a d imensionless  characteristic),  
and rewrites (2.28) using it: 

tol = px dx + [p2 _ (Ap~)Z/3] dt + 

- d(pxp~) + Nq~o d'q 

= Px dx - - -~  p~ + -~ (Ap2,r) 213 dt + Nq~o d'q 

= Px dx - p, dt + dto ° + Nq~o d'q (2.30) 

So the generat ing funct ion to o = p,t + p~cr as a funct ion of  old and new 
variables is 

to°(a, or; x, t) = (x - a)Zt + 3 A2/3(x _ a)4/3 t 

+ (x -- a)er (2.31) 

The  constraint  is the genera tor  o f  the infini tesimal redefinit ion of  the 
t ime r I by means,  and hence it t ransforms the dynamica l  variations. But this 
t ransformat ion does not change the dynamica l  state o f  the system. I f  we solve 
the constraint  equat ion 

1 2 3 1 2 1 - ~  pc, + ~ (Ap~) 213 = ~ p~ - ~ x 2 (2.32) 
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and reduce the 1-form (2.31), then we get 

to I = p dx - H(p, x) dt (2.33) 

with the Hamiltonian H(p, x) 

1 p2 _ 1 x2 / - / (p ,  x )  = (2.34) 

or, in the initial system of units, 

{16a'rG~ p 2 { 3c3V I xZ 
U(p, x) = \ 3c3V ,] -~ - \ ~ ] -~ 

This makes it clear that we are dealing with a conservative system having 
energy E: 

1 M2 3 E = - ~  + ~ (AM2) 2/3 (2.35) 

Unfortunately, there are no systematic rules for finding the most success- 
ful canonical transformation and for reducing the phase space of an arbitrary 
Hamiltonian system. The choice of these new coordinates is an art. 

The Hamiltonian H(p, x) generates the phase flow. The phase "portrait" 
of the two-dimensional system studied here has an unstable singular saddle 
point. The phase curves correspond to the motion of a particle in the potential 
U(x) = -(1/2)x 2 of the harmonic oscillator with negative stiffness. This 
effective problem describes the dynamics of variation of the compactified 
pseudosphere with curvature radius a in time t. The effect of the nonregularity 
of the behavior of the system due to the "turned over" harmonic potential 
will show up on the quantum level of description. 

The curvature radius a(t) as well as the intrinsic time "r increase exponen- 
tially with the time t. This agrees with the solutions of the Friedmann model. 
This system dynamically is unsteady. An arbitrary small perturbation of initial 
conditions leads to arbitrarily large deviations of the phase trajectory from 
the nonperturbative one situation. This will also show up on the quantum 
level of description of the system. The total energy E conserved in time also 
is not added as the sum of the mass energy, radiation energy, and gravitational 
interaction energy. We restrict consideration of energies to the interval -~M 2 
< E < ¼M z. The lower inequality (A = 0) follows from the demand of 
positive gas pressure, the upper one (M = A) from a univalent canonical map. 

Let us analyze now the solutions of the Friedmann equations in detail, 
considering all solutions, including nonphysical ones. 
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For E > 0, i.e., M < (-~)3/2A, we can say that radiation "prevails" over 
matter. The solutions a(t) and r(t) in parametrized form are 

a(t) = - M  + x / ~  sinh(t), "r(t) = - M t  + x / ~  cosh(t) (2.36) 

and the dependence between the radius of  curvature and intrinsic time is 

"r(a) = [2E + (a + M)2] L/2 - M arcsinh[(a + M)/x/2--E] (2.37) 

The transition of  the scale factor a(t) from positive quantities to negative 
ones may be interpreted as the collapse of  the world (a > 0), transition 
through a singularity (a = 0), and big bang creation of  an antiworld (a < 
0). The space-time metric is invariant relative to a change of the sign of  the 
scale factor, but the flow of the proper time "r of the universe suffers T 
reflection. As to space, it "turns inside out" (P reflection), as the embedding 
coordinates into six-dimensional pseudo-Euclidean space change sign. If the 
sign of a changes, the sign of  p also changes, as M = pa 3, and M is the 
integral of  the motion, which leads us to interpret this event in terms of  
relativistic quantum field theory as C transformation. Thus CPT transforma- 
tion takes place at the singular point of  space-time, as was already suggested 
(Burlankov et al., 1984). 

For the case when the universe is filled with radiation only, M = 0, A 
= ot3/2]M2 (~ is a parameter which characterizes the radiation, E = (3/4)ot, 

= 3ed(4a4)], we have 

a(t) = v / ~  sinh(t) 

-fit) = v / ~  cosh(t) (2.38) 

"r 2 - a 2 = 2E 

The dependence "r = "r(a) in the vicinity of a = 0 is quadratic: "r -- a 2. 
For the second case, E = 0, M = (3)3hA, a partial solution of  the 

Friedmann equation is 

a(t) = M[exp(t) - 1] 

• (t) = M[exp(t) - t + 1] (2.39) 

"r(a) = a - M log[(a + M)/M] 

Finally, we have the most interesting and realistic case: the dust "pre- 
vails" over radiation. In this case when the dust is "mixed" with radiation, 
- ( 1 / 2 )M 2 < E < 0, the solutions of  the Friedmann equation are 

a(t) = - M  + (21EL)J/2 cosh(t) 

"fit) = - M t  + (21 El)l/2 sinh(t) (2.40) 

_ 'r(a)  = [(a + M) 2 - 21El]  In - MAr cosh[(a + M)/(21EI) In] 
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We see that a cycle results, the possibility of which was discussed in 
an article about a closed universe by Burlankov et al. (1984). At the moment v~, 

"r~ = - [(M 2 - 21 EI )1/2 _ M A r  cosh(M)/(21 El )u2] (2.41) 

a world-antiworld pair is created. At the moment "r2 = -'r~ the annihilation 
of the antiworid with a primary compressed world takes place. The world 
born at the time "r~ extends freely. Intrinsic clocks are not very convenient 
because they change their rates. This interpretation is natural, for these solu- 
tions were found without any major modifications of general relativity such as, 
for example, the introduction of an infinite to high wall as by De Witt (1967). 

If the radiation is absent, M = (21El) u2, A ---> 0, the solutions are 

a(t) = M[cosh(t) - 1] 

"r(t) = M[sinh(t) - t] (2.42) 

+_'r(a) = [a(a + 2M)] in - M A r  cosh[(a + M)/M] 

1 ~31~.¢~ 1/2 If t is small, -r = .~(2u ~,~) . 
Finally, if E < - ( I / 2 ) M  2 (the imaginary case p < 0), the world does 

not transit through the singularity. 

3. QUANTUM DYNAMICS OF THE M O D E L  

We consider transitions of the universe through the singularity, so we 
must develop a quantum description of the behavior of the model in the 
vicinity of the singularity when the scale of the phenomena is the Planck 
scale. Many methods of quantization are available, and lead to inequivalent 
results. No unique successful scheme for the quantization of gravity has been 
elaborated. In this paper we use the reduced phase-space quantization (RPSQ) 
"'first reduce and then quantize" method (or Arnowitt-Deser-Misner,  ADM, 
method). But first we simplify the classical system by using canonical trans- 
formations (see Section 2). The canonical transformations plus RPSQ permits 
us to solve the problem completely. The consistency of the quantum mechani- 
cal results with the classical representation will be shown by proving the 
Ehrenfest theorem. 

We can obtain the quantum equation if we substitute all dynamical 
variables in the classical equation by differential operators which act in the 
linear vector space of states (Dirac mapping). So we obtain a differential 
equation with the standard interpretation of its solutions through a Schrrd- 
inger-like equation. Let us put h = 1, i.e., we choose the Planck system 
of units: 
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O 1 0 2 1 
i 3t * - 2 Ox 2 t~ + ~ x2d~ (3.1) 

The wave function satisfies the SchrOdinger equation for the oscillator with 
an imaginary frequency. We can rewrite the Hamiltonian operator using the 
initial units 

12 ~2 h v  x 2 
/ : /(p,  x)  - 

h v 2  t 2 2 

where the Planckian length is 

= [16"rrGh~ 'n 

lp k 3C3 ] 

Let us show how the quantum state space can be built. The stationary 
states are 

~(t, x) = eW'd)(x) (3.2) 

Now we have to solve the eigenvalue problem on a restricted function O(x): 

) + x 2 + E t~(x) = 0 (3.3) 

This is a second-order equation with the irregular point x = ~. We represent 
the ~-function in the form 

~(x) -- e--*/~2n~(x) (3.4) 

Then the differential equation becomes 

~"(x) - 2hx~'(x) + (k z - k)~(x) = 0 (3.5) 

where h = ~i ,  k 2 = 2E. Introducing a new variable y = hx z, we obtain the 
Gauss equation (Smirnov, 1974) 

y t V ' ( y ) + ( l - y ) O c ' ( y ) + ( - ~ h - l ) q ~ ( y ) = O  (3.6) 

where derivatives are taken with respect to the variable y. Setting a = ¼ - 
k 2 / ( 4 h ) _  m - - ~ + iE/2, we express the general solution of the equation in terms 
of degenerate hypergeometric functions F(a, b; y) (Smirnov, 1974): 

/ ) O(y) = A F  a, ; y + BylnF a + ~ ,  ~ ; y (3.7) 
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The hypergeometric function F(a, b; y) is regular at the point y = 0, and 
one can show that 

F(a,b; y) 1 + a y + a(a + 1) y2 = - - -  + " "  ( 3 . 8 )  
b I! b(b + 1)2! 

The point y = ~ is an irregular singular point. As y ~ m, both terms in (3.7) 
diverge a s  eYy a-I/2 (Smirnov, I974), or, returning to the variable x, 

f -T-ix2'~ [(~i)Jnlxl ] =iE 
+ ( x ) -  e x p ~ - - ~ )  [(_7_i),nlxt]l n (3.9) 

To normalize the functions qJe(x), it is sufficient to use their asymptotic 
expressions (Landau and Lifshitz, 1974). Then, using (3.9), we get 

dx 

_-- f+~ dx IXI*-iCE'-E) 
J_= Ixl 

= f f ~  d log(x) exp[ - i (E '  - E) loglxl]  

= 2~r8(E' - E) (3.10) 

The eigenfunctions of the Hamilton operator are 

- ~ e x p  - -  - i x ,  L ,  qJe(t, x) 2 4 / ~  ~ 2 ) F  

"f-Z-i ex liX2' (~ E - i x 2 )  (3.11, d~e(t,x) - ~ P ~ T ) x F  - i } ; 

This basis is orthonormal and complete. The spectrum of the states is 
continuous. 

Now we consider the dynamics of the quantum average means of wave 
packets. Since the Hamiltonian is a polynomial of the second order in x and 
p, their quantum average means follow the classical trajectory, 

(02) 
a s  = = ( p )  

- 7 7  = ( 2 }  ( 3 . 1 2 )  
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The spectra of  the scale operator ~ and the intrinsic time ? are continuous 
and occupy all the real line. Their average means 

(a) = (2) - (p~} 

('~) = - (p ,~ ) t  + (Px) (3.13) 

change according to the classical formulas. Note that the operator of intrinsic 
time is obtained by the following definition: d r  = a d t  = (x - p~) d t  = dp  

- p ~  dt, so 'r = P x  - p ~ t .  

We can conclude that the Ehrenfest theorem holds in our model. Now, 
we investigate the evolution of dispersions of  .f and p of  the antioscillator, 

x = ( 0  2) - ( 0 )  2 

to = (p2) _ (p)2 (3.14) 

Their evolutions can be obtained from the Schr6dinger equation: 

d 
i ~ X = ([02 _ (~)~,/2/]) 

d i ~ to = ([/3 z - (p)2, i21]) (3.15) 

For the Hamiltonian H = p2/2 + V(q), we have 

d 
dt  × = ( p q  + qp)  - 2(p)(q) (3.16) 

which can be differentiated one more time: 

d 2 
× = 2to - ( (V ' q  + q V ' )  - 2(q)(V')) (3.17) 

We introduce the variable e: 

1 
=-- (H)  - e¢, = -~ to + iV(q) )  - V((q))  (3.18) 

and get 

1 1 
= ~ ¢o ___ ~ X = const (3.19) 

The upper sign is for the oscillator, and the lower one is for the antioscillator. 
As a result we obtain the differential equation for the antioscillator case: 

d 2 
d--~ X - 4X - 4~ = 0 (3.20) 
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Then the general solutions of these equations are 

X = CI e2t + C2 e - z t  - • 

to = 2Cle  2t + 2C2e -2~ + • (3.21) 

where C, and Cz are some constants. The dispersions increase exponentially 
in time. We stress that the exponents are expressed through time t only. 

To compare the motion of the quantum packet with the motion of the 
classical particle, it is necessary, first, that the average means of the coordinate 
and the momentum of the packet should follow the classical mechanical laws, 
which hold in our case, and second, that the dimension of the packet in the 
minisuperspace must be small enough at any time moment. But, in our case, 
because of the exponential increase in time of the dispersion, diffusion of 
the packet occurs. This fast reduction is the consequence of the dynamical 
nonstability of the classical solutions. The other principal correlation of 
quantum mechanics--between energy and intrinsic time--also holds in view 
of the exponential increase of the dispersion of the time operator. 

Proceeding with the analogy with quantum mechanics, one can define 
the "barrier factor" D(E) for a particle penetrating through the potential barrier 
U(x) = -x212 in the minisuperspace, since the quantum description of physical 
values has a statistical character. 

The Wheeler superspace, as we mentioned, in the general case is built 
as a factor of Riem(M) (the space, every point of which is some Riemann 
metric, and some state of matter over the base manifold M) by the group of 
coordinate diffeomorphisms Diff(M): Riem(M)/Diff(M). In our case it is 
reduced to one-dimensional space. 

We choose the asymptotic expressions, as in standard quantum mechan- 
ics (Landau and Lifshitz, 1974), for the wave functions in this minisuperspace: 

~ ( x ) = B x  'E-l/2exp x 2 , x ~ + ~  

~(x) = ( - x )  -ie-tl~ exp - ~  x 2 + A ( - x )  m-l/2 exp x 2 , x--~ - ~  

(3.22) 

where A and B are scattering amplitudes. The first term in (3.22) describes the 
incident wave, the second term the reflected one. The direction of spreading of 
the wave is that of increasing phase. The constraint between A(E) and B(E) 
can be found proceeding from quasiclassical ideas. 

The asymptotic expressions for ~ hold at a sufficiently remote region 
of the complex variable x, where the quasiclassical situation holds (Landau 
and Lifshitz, 1974). Then the coefficient D(E) is 
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1 
D = I BI 2 = (3.23) 

1 + exp(-2"rrE) 

To conclude: Quantum effects do not exclude the collapse of the model 
universe. The "world" reaches the singularity, transits it, and then is born as 
an "antiworld," in the sense mentioned. The quantum approach carries the 
probability analysis into the studied problem of the collapse, but does not 
forbid its possibility. 

4. COMPARISON OF VARIOUS METHODS OF QUANTIZATION 

We compare our method of quantization (a canonical transformation 
and a Hamiltonian reduction of a classical system before the canonical quanti- 
zation) and other modern approaches (Guven and Ryan, 1992). 

Dirac quantization is based on replacing the Hamiltonian constraint 
(2.22) by a quantum operator (Dirac mapping) which annihilates physical 
states of the system 

I1  , 3 ] - p~ +~(a +/~g)2-2/~ +4(APg)~:3 I,) =0 (4.1) 

This is, in fact, the Wheeler-De Witt equation. It is evident either from the 
different identification of time (cr plays the role of time) and the type of 
differential operator that the Dirac quantization differs from our approach. 
The Born interpretation of the 0-function is lost because there is no standard 
equation of continuity for some conserved current. So it is rather difficult to 
invoke this in solving this differential equation. 

The essence of the ADM quantization is in resolving the constraint 
equation ~b0(a, p,, p~) on the classical level of description with respect to p,,  
p,~ = p,~(a, Pa), and in imposing on the ~-function an operator restriction: 

(p~, - p,~(a, po)) I~) = 0 (4.2) 

The algebraic constraint is to be solved analytically because it is a 
fourth-order algebraic equation in p,~. Unfortunately, since the solution is 
expressed by means of a radical, it is difficult to treat. In principle, the ADM 
solutions and Dirac solutions differ. Both the Dirac approach and the ADM 
approach do not yield the standard quantum mechanical interpretation of the 
wave function. 

Also, in both cases the notorious operator-ordering problem (between 
c~ and/~o) holds. 

Another method of quantization developed for constrained system is the 
Faddeev-Popov approach based on path integrals. The Green function for 
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the antioscillator can be written by using a functional integral (Slavnov and 
Faddeev, 1988) 

f } (x", t " lx ' ,  t ' )  = Dpx Dx  exp i [Px dx  - H ( p .  x) dt] (4.3) 

where H(px,  x) is the Hamiltonian of the antioscillator and at the ends of the 
closed time interval the coordinates are fixed: x(t,,) = x", x(to) = x ' .  

The time interval has been divided into N equal intervals At. The integra- 
tions over x are performed at points tk = to + kAt ,  k = 1 . . . . .  N - 1, and 
those over the momentum are performed at midpoints tj+u2 = to + (k + 
l/2)At, k = 0 . . . . .  N - 1. The x is fixed and its conjugate momentum is 
free at the initial and final points. We have 

(x", ~'Ix',  t ') 

j=o ~ (tj+ ire) k=117 dx(tk) 

× exp i ~ ,  px(tl+l/2)(xl+l - xt) - P~(h+u2) - x2(tt) At (4.4) 
l=0  

The next step in the Faddeev-Popov method is to add an additional degree 
of freedom y -- t, and a constraint ~Po = Py + H(p~, x)  at intermediate points 
of the scheme between the boundaries, and consider the evolution of the 
system in the parameter 0: 

(x", t"lx ' ,  t ') 

= f ~ l  dpx(.qj+l,2 ) dpy('qj+ 1/2) 

J~i=o 2-rr 2~ 

n - I  n - I  

× l~ dx( 'qk)dy( 'q , )  I-[ dh(xlt+u2)Axl 
k= 1 I=0  

n - I  

x 1-I a(y - [to + A~k]) 
k = l  

n - I  

X exp i ~ [Px('q,.+u2)(x,.+l - Xm) + Py('qm+u2)(Ym+t -- Y.,)] 
m=0 

n - I  

X exp - i  ~ h('q,,+u2)A'q [Py('qn+l/2) + H(px('q,z+u2), x('rl,,))] (4.5) 
n = 0  

Then taking the canonical transformation (2.28), (x, Px; Y, Py) ~ (a, p~; 
or, p,,), of the variables in the Feynman integral (4.5), we obtain 
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(~", t"lx ' ,  t ') 

da('qk) do'('qk ) 
J ~k=o 2~ 2"rr 

"-~ ~( cr(vb) + p,,('q;+~n) 
x  =117 +,,2, - I , o  + a vj / 

a/ 1 , 3 ) 
× / -  ~ PT,(~j+~/:) + ~  [AP2~Oqj+ln)] ~3 4- H(p,~('qj+l/2), a('qj), P,~('qj+u2)) 

n -  I 

× exp i ~ [P~,('q/+ln)(a1+l - at) + p~('qt+ln)(crt+t - o't)] 
I=0 

[ tY('qO) + Pa('ql/2) 
X 8(a(aq0 ) + p~(xlo ) - x0)S[ - -  - to ) \p,~(Tht2) --  [a2p,d'q112)] l/a 

× exp/[to°(t ,)  - to°(to)] (4.6) 

The number of  momentum and configuration integrations does not coincide, so 
we introduced 8-functions at points Xo, Yo for a matching: 8(x(~lo) - Xo)8(y(vlo) 
- Yo)- We supposed in the limit n --) oo that the points of  integration over momenta 
tend to the left to the points of  integration over the coordinates. Because the 
Liouville measure is conserved under a canonical transformation, we used this 
property. Then, the exponent is an integral of  1-form to~. Under canonical mapping 
an exact form too, (2.31), arises. We integrate over nondiscontinuous trajectories, 
so the exponential factor defined in the limits of  the time interval appears in the 
last line in (4.5). 

Integrating over a(~o) and ~Y0qo), we get 

(~', t"lx', t') 

= f Da Dp~ D~ Dp,, ~(¢p0)~i(X)lpcr('qu2) - [a2p,~("qln)]lnl 

X exp i[to°(tn) -- co°(to)] (4.7) 

where X is the gauge. The  F a d d e e v - P o p o v  determinant  in our  case is unity. 
The  measure is written in a standard form. One should not over look a 
mismatch in the number  o f  momentum and configurat ion integrations (there 
is one unpaired momentum integration). 

Using the F a d d e e v - P o p o v  method,  we are to multiply the measure at 
the boundary points of  the path integral in the factor in (4.7). The factor in 
(4.7) is def ined at the point "[]1/2 or "qn-1t2- It depends on the choice in the 
limit n ---> oo of  whether  momenta  points ( intermediate points) tend to the 
left or to the right o f  adjacent coordinate points. 
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An attractive description of systems with constraints is provided by the 
Becchi-Rouet-Stora-Tyutin (BRST) formalism. Rather than reducing the 
phase space, it extends it by adding Grassmann dimensions. The correspond- 
ing extended phase space (superspace) Batalin-Fradkin-Vilkovisky (BFV) 
functional integral corresponds to an unconstrained Hamiltonian system. 
There is a general method for making this transition [see, e.g., Halliwell 
(1988) for systems with finite degrees of freedom]. 

The total action is 

St=  , dr) p . ~ + p ~ - - ~ + I I ~ - ~ + ~ - - ~ + ~  - { ~ N + ~ x , O }  

(4.8) 

One adds four anticommuting Grassmann variables c, ?, p, ~. Here H is a 
canonically conjugate variable to N, playing the role of Lagrange multiplier, 
× is an arbitrary function from the gauge-fixing condition N = ×(a, p,,, or, 
p, ,  N), Ut -- cH + pH is the BRST charge, and {-, • } is the super-Poisson 
bracket. The Lie algebra is supplemented by the following relations between 
generators in the superspace: 

{?, p} = 1, {~, c} = 1, {N, H} = 1 (4.9) 

The BRST charge generates the BRST flow of some value F: 

~F = {F, AI~} (4.10) 

where A is a constant anticommuting parameter. In our case we get the 
BRST transformation 

~q = Ac, 8p = - A c ,  ~N = Ap, 8H = 0 

8 c = 0 ,  8p = 0 ,  8 7 =  - A c ,  8 ~ =  - A H  (4.11) 

The classical trajectory is given by the condition of the extremum of 
ST, (4.9): 

OH a2______XX 
(¢I= N + ?c~ OX H + H +-EP OpON 

Op [tip" 

= - N  31"1 _ _Ec~8× H} 3X 32X 
P Oq [ Oq ' _ - -~q II - -Ep O-~-N 

I'I = - H  - cc~ OX , H}  OX 02X 
[ ON - ~-~ I-[ - Vp ON 2 

a__xx 
N =  X, ~ = -c {  X,H}, 0 = c{x,H} + PON 

(4.12) 



Compact Hyperbolic Cosmological Model 2189 

a x  
c =  - - 5  - ~ O N '  e = p 

with boundary conditions 

pSql~'~ = FIgNI',~ = ~Scl~g = ~SP It",0 = 0 (4.13) 

We obtain solutions of the system (4.13) if we choose a gauge X = 0: 

Cl = N a i l  OH H = O, N =  No ~p , p = - N  Oq ' 

= 0  P = Po, ~ = 0 ,  c =  po t+co  (4.14) 

The Fermi variables are separated from the Bose ones. For the latter 
variables we have found the Hamiltonian equations and the constraint. 

Now the path integral is defined in superspace: 

(x(t")lx(t')) = ] Dtx exp iSr (4.15) 

where the measure is 

D~ = Dp~ Da Dp~ Dcr DI-I DN Dp D-( D-ff Dc (4.16) 

The BFV approach is independent of the choice of gauge-fixing function X 
by the Batalin-Vilkovisky theorem. So we may put × = 0, and the ghosts 
decouple from the other variables. So, after integration by Grassmann vari- 
ables (Halliwell, 1988), we obtain for the Green function 

(x(t") I x(t')) 

= f D N ( ' q . - q o )  f DpaDaDp,~D(r 

× e x p i  , d~ Pa ~ + P~ ~ - N~Po(P~, a, P,) (4.17) 

If we had started from the canonical transformed system of reference 
(x, p.,, ~, p~) we would have obtained the expression 

(x(t") l x(t')) 

= f DN('q,- 'qo)  f Dp.,DxDptDt 

× exp i , d~l P'-d-~ + p~ -~ - N(p, + H(px, x))) (4.18) 
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To compare the obtained expressions for the Green functions, let us 
carry out the canonical transformation (2.28) of the variables in (4.18). We find 

(x", t"Ix', t') 

= Da Dp~ D e  Dp~ g(~po)exp i , d~ Pa ~ + P,, ~ -- N~p0 

X exp i[m°(t,) -- m°(t0)l (4.19) 

This differs from the BFV expression for the Green function by the exponen- 
tial multiplier in (4.19). 

Thus we are to redefine the measure of integration in both the Faddeev- 
Popov and Batalin-Fradkin-Vilkovisky approaches according to the above 
formulas. 
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